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Outline
1.

 
Status, Enhanced Design, EBIS

2.
 

(Low energy operation)
 → covered by George Stephans, MIT

3.
 

RHIC II 
→

 
electron cooling

4.
 

Other ideas 
→

 
stochastic cooling, IR modifications, electron lenses

5.
 

eRHIC
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Relativistic Heavy Ion Collider

• 2 superconducting rings
• 3.8 km length
• operation since 2000
• 6 experiments so far

•
 

only operating ion collider
 (up to gold 100 GeV/n)

•
 

only operating polarized 
proton collider
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RHIC running modes

Au–Au  4.6, 10, 28, 31, 65, 100 GeV/nucleon

d–Au         100 GeV/nucleon

Cu–Cu       11, 31, 100 GeV/nucleon

Polarized p–p 11, 31, 100, 205, 250 GeV

Some modes only for days – fast machine setup essential.
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RHIC delivered luminosity

Delivered to PHENIX, one of RHIC’s high-luminosity experiments.

Delivered luminosity increased by >2 orders of magnitude in 7 years.

FOM=LP4
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Hadron collider luminosities

Show nucleon-pair luminosity for ions: LNN

 

(t) = A1

 

A2

 

L(t)
 (can compare different ion species, including protons)
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Calendar time in store after setup

Setbacks in last 2 years
- set-up times decreased in Run-7 (~1 h/store)
-

 
but failure hours increased significantly

 Failures modes are under intense scrutiny 

goal 
100h/week
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Enhanced Design Parameters (~2009)
Parameter unit Achieved Enhanced 

design

Au-Au operation
Energy GeV/n 100 100
No of bunches … 103 111
Bunch intensity 109 1.1 1.0
Average L 1026cm-2s-1 14 8
p↑- p↑

 
operation

Energy GeV 100 250
No of bunches … 111 111
Bunch intensity 1011 1.4 2.0
Average L 1030cm-2s-1 20 150
Polarization P % 60 70

7.5×
+10%

Exceeded Enhanced 
Design goal 

(15-20% from stochastic 
cooling in Yellow)
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Electron Beam Ion Source (EBIS)
•

 
Current ion pre-injector: 

upgraded Model MP Tandem (electrostatic)
•

 
Plan to replace with:

 Electron Beam Ion Source, RFQ, 
and short linac

→ Can avoid reliability upgrade of Tandem
→ Expect improved reliability at lower cost
→ New species: U, 3He↑
→ Under construction

→ Expect commissioning to begin in 2009
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Low energy Au-Au operation (1)
Demonstrated Au-Au collisions 
at √s = 9.2 GeV/nucleon          T. Satogata et al.
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]

0

24
15 minutes Debunching

Luminosity not yet analyzed quantitatively.
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Low energy Au-Au operation (2)
Event seen by the STAR detector.

Low energy operation in principle possible. 
Luminosity of this year’s test (1/2 normal injection energy) 

not yet analyzed quantitatively.

 
→ Working on e-cooling in AGS for luminosity increase 

at even lower energies (down to 1/4 or normal injection).
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RHIC II –
 

electron cooling
 

(≥
 

2013)
Parameter unit Enhanced 

design 
(achieved)

RHIC II

Au-Au operation
Energy GeV/n 100 100
No of bunches … 111 (103) 111
Bunch intensity 109 1.0 (1.1) 1.0
Average L 1026cm-2s-1 8 (14) 70
p↑- p↑

 
operation

Energy GeV 250 250
No of bunches … 111 111
Bunch intensity 1011 2.0 2.0
Average L 1030cm-2s-1 150 400
Polarization P % 70 70

9×
 

(5×)

2.5×
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RHIC II –
 

electron cooling
 

(≥
 

2013)

Hadron collider luminosities
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RHIC II –
 

electron cooling
 

(≥
 

2013)
Use non-magnetized cooling (no solenoidal field)

(demonstrated with 8.9 GeV antiprotons in Fermilab Recycler –

 

Nagaitsev et al.)

For 100 GeV/nucleon Au beams need:
• 54 MeV electron beam 
• 5nC per bunch 
• rms emittance < 4 μm
• rms Δp/p < 5×10-4

→ 2.7 MW beam power
 → need Energy Recovery Linac (ERL)

Courtesy D. Kayran
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RHIC II –
 

electron cooling
 

(≥
 

2013)
IR12

AGS

BOOSTER

LINAC

EBIS

PHENIX

STAR STAR

RF

e-coolingbeam dump

Wolfram Fischer

Cooling section: 
110m long, βx,y ≈

 
400m
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Electron cooling section in IR2

`
100 m

IP2

E
R

L

helical wigglers

e-

e-

e-

RHIC triplet RHIC triplet

10 m

solenoids

Electron beam first cools ions in Yellow ring, then the same beam 
cools ions in Blue ring of RHIC.
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RHIC II –
 

electron cooling
 

(≥
 

2013)

Simulated luminosities (A. Fedotov) For:
•

 
Beam-loss only from

 burn-off (luminosity)
•

 
Constant emittance 
(cooling)

2)/1(
)0()(
τt

t
+

=
L

L

→ τ ≈
 

5
 

h for Au-Au
 Store length limited by burn-off
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RHIC II –
 

electron cooling
 

(≥
 

2013)

no cooling

with electron cooling

Bunch length with electron cooling

Can maintain 
20 cm rms 
bunch length.

Shaping of 
longitudinal 
distribution is 
possible.
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RHIC II –
 

electron cooling
 

(≥
 

2013)

E-cooling system under development allows

•
 

Cooling of all species at high bunch intensities
 (stochastic cooling slows down rapidly for Nb

 

>

 

109)

•
 

Cooling down to transition energy

•
 

Pre-cooling of protons at lower energies (30 GeV)
 (to emittances corresponding to beam-beam limit ξmax

 

)

•
 

Limited cooling of protons at 100 GeV
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Other ideas: transverse stochastic cooling (HI)
Longitudinal stochastic cooling operational

 
in Yellow.

M. Brennan 
M. Blaskiewicz

→ 15-20% increase in delivered luminosity. 
Expect same improvement with heavy ions in Blue.
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Other ideas: transverse stochastic cooling (HI)
Transverse stochastic cooling appears also possible for heavy ions.

Frequency    : 5-9 GHz
Cooling time: ~ 1 hour

cm45

cm45

cm80

Calculations by 
M. Blaskiewicz

current typical average

RHIC II goal with e-cooling           
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Other ideas: lower β*  (pp)

•
 

Polarized proton luminosity not limited by 
burn-off → reduction in β* useful

•
 

Some options:
–

 
Squeeze more with existing magnets

–
 

Quadrupole first IR
–

 
Slim magnets within detectors

D. Trbojevic et al.
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Other ideas: lower β*  (pp)

0.75 0.70

Recent test with 
Au beams
(F. Pilat et al.)

β* lowered from 
0.80m to 0.75m 
to 0.70m
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Other ideas: lower β*  (pp)
Quadrupole first IR (S. Peggs, S. Tepikian)

l* = 10 m and maximum β
 

maintained, β* = 0.20 m 
However, problems with asymmetric species.
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Other ideas: electron lenses (pp)
Y. Luo et al.Why an electron lens?

Polarized proton luminosity limited by 
beam-beam induced tune spread.

This tune spread 
can only be 
reduced by an
electron lens, 
not by magnets
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Other ideas: electron lenses (pp)

2 e-lenses operate in Tevatron (not for head-on compensation)

Beam-beam effects cannot be 
corrected with magnets

beam-beam kick

magnet kicks
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Other ideas: electron lenses (pp)
Simulation by Y. Luo

Tune diffusion w/o e-lens Tune diffusion w/ e-lens

Electron lens studies under way (~1 year),
Hardware construction (~1 year) only after benefit established.

 E-lens technology is similar to EBIS technology.



Wolfram Fischer 28

eRHIC (≥
 

2015)

Main features:
•

 
High-luminosity electron-ion collider
–

 

1032-1033cm-2s-1

 

average for e↑-p↑
–

 

1030-1031cm-2s-1

 

average for e↑-A(↑)

•
 

10 GeV electron beam (upgrade to 20 GeV)
•

 
Longitudinally polarized electrons, 
protons, possibly light ions

•
 

2 versions developed 
–

 
Ring-ring option  (B-factory like e-ring)

–
 

Linac-ring option (higher luminosity potential)

V. Litvinenko 
V. Ptitsyn et al.
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eRHIC (≥
 

2015)

Hadron collider luminosities
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eRHIC (≥
 

2015)
eRHIC detector

Place for doubling 
energy linac

ERL (5-10 GeV e-)

For multiple passes: 
vertical separation of the arcs

AGS

BOOSTER

LINAC

EBIS

PHENIX

STAR STAR

RF

e-coolingbeam dump

Wolfram Fischer

Compact recirculation 
loop magnets
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ERL-based eRHIC parameters
Electron-Proton Collisions Electron-Au Collisions

High energy 
setup

Low energy 
setup

High energy 
setup

Low energy 
setup

p e p e Au e Au e

Energy, GeV 250 10 50 3 100 10 50 3

Number of bunches 166 166 166 166

Bunch intensity, 1011 (109

 

for Au) 2.0 1.2 2.0 1.2 1.1 1.2 1.1 1.2

95% normalized emittance, πμm 6 115 6 115 2.4 115 2.4 115

Rms

 

emittance, nm 3.8 1.0 19 3.3 3.7 1.0 7.5 3.3

β*,  x/y, cm 26 100 26 150 26 100 26 60

Beam-beam parameters, x/y 0.015 2.3 0.015 2.3 0.015 1.0 0.015 1.0

Rms bunch length, cm 20 1.0 20 1.0 20 1.0 20 1.0

Polarization, % 70 80 70 80 0 0 0 0

Peak Luminosity/n, 1.e33 cm-2s-1 2.6 0.53 2.9 1.5

Aver.Luminosity/n, 1.e33 cm-2s-1 0.87 0.18 1.0 0.5
Luminosity integral /week, pb-1 530 105 580 290

Luminosity of ring-ring version 10×
 

lower
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eRHIC interaction region design
Yellow ion ring makes 3m vertical 
excursion.
Design incorporates both normal and 
superconducting magnets.
Fast beam separation. Besides the 
interaction point no electron-ion collisions 
allowed. 

Synchrotron radiation emitted by electrons 
does not hit surfaces of cold magnets

(Blue) ion ring 
magnets

(Red) electron 
beam magnets

(Yellow) ion 
ring magnets

Detector
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IR Design Schemes
Distance to 

nearest magnet 
from IP

Beam 
separation Magnets used Hor/Ver beam 

size ratio

Ring-ring,
l*=1m

1m
Combined 

field 
quadrupoles

Warm and cold 0.5

Ring-ring, 
l*=3m 3m

Detector 
integrated 

dipole
Warm and cold 0.5

Linac-ring 5m
Detector 

integrated 
dipole

Warm 1

No crossing angle at the IP
Linac-ring: larger electron beta*; relaxed aperture limits ; allows round 
beam collision geometry (the luminosity gains by a factor of 2.5).
Detector integrated dipole: dipole field superimposed on detector solenoid.
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ERL-based eRHIC R&D items

•
 

High intensity polarized electron source
 → larger cathode surface with existing densities ~50mA/cm2, good lifetime

•
 

ERL technology for high energy, high current beams
 → R&D ERL under construction at BNL

•
 

Development of compact recirculation loop magnets
 → Design, build and test small gap magnet and vacuum chamber

•
 

Electron-ion beam-beam effects
 → instability and break-up of electron-beam

 → realistic simulations, possibly tests with e-lens

•
 

Polarized 3He production and acceleration
 → EBIS as ionizer of polarized 3He gas

 → depolarizing resonance with anomalous magnetic moment diff. from p



Wolfram Fischer 35

Summary RHIC
•

 
Exceeded Enhanced Design goal for 
Au-Au luminosity in Run-7

–

 

Time in store only 46% compared to 53% in Run-4 and 60% goal
–

 

No progress demonstrated with proton L

 

and P

 

(no running)

•
 
Demonstrated feasibility of Au-Au operation 
at E = 9.2 GeV/nucleon cm

–

 

e-cooling in AGS under investigation for even lower E

•
 
EBIS commissioning expected to begin in 2009 (U, 3He↑)

•
 
RHIC II  (based on e-cooling at store)

–

 

Order of magnitude higher heavy ion luminosity
–

 

2-3x higher proton luminosity

•
 
Other ideas under study

–

 

Transverse stochastic cooling (HI), IR optics (pp), e-lenses (pp)

•
 
eRHIC

–

 

High luminosity e↑-p↑, e↑-A(↑) collider (ERL-based Lavg = 1033cm-2s-1)
–

 

Several R&D items for ERL version need  to be pursued
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